U.S. Department of Transportation Federal Highway Administration Office of Planning, Environment and Realty Office of Infrastructure

Adaptation to Extreme Weather Events and Climate Change

SASHTO Meeting Robert Kafalenos, FHWA August 25, 2014

U.S. Department of Transportation Federal Highway Administration

Planning for the Future...

- What we know:
 - Future will not be like the present
 - Present is not like the past
 - Transportation infrastructure is sensitive to extreme weather & climate change
- What we don't know:
 - Exactly when or how much
- Approach:
 - FHWA funds can be used for adaptation activities
 - Research and Technical Assistance: information, tools that State DOTs and MPOs can use to assess risk and improve resilience
 - GROW AMERICA would add consideration of resilience, adaptation

"U.S. average temperature has increased by 1.3°F to 1.9°F since 1895, and most of this increase has occurred since 1970." – NCA

"Temperatures are projected to rise another 2°F to 4°F in most areas of the United States over [just] the next few decades." – NCA

U.S. Department of Transportation Federal Highway Administration

Climate Change Adaptation at FHWA

Goal: Regular/Systematic consideration of climate change vulnerability and risk in transportation decision making, at:

- 1) **Systems Level**: Transportation Planning, Asset Management
- 2) Project Level: Environmental process, Preliminary Engineering, Design, Construction, Operations, Maintenance

Systems Level Goal: Consideration in Transportation Planning, Asset Management

Key Product:

• Updated Climate Change & Extreme Weather Vulnerability Assessment Framework (2015)

Activities:

- Climate Resilience Pilots round 2
- Gulf Coast 2 (Mobile)
- Hurricane Sandy Follow-up and Vulnerability
 Assessment & Adaptation Analysis
- Central NM Climate Change Scenario Planning Project

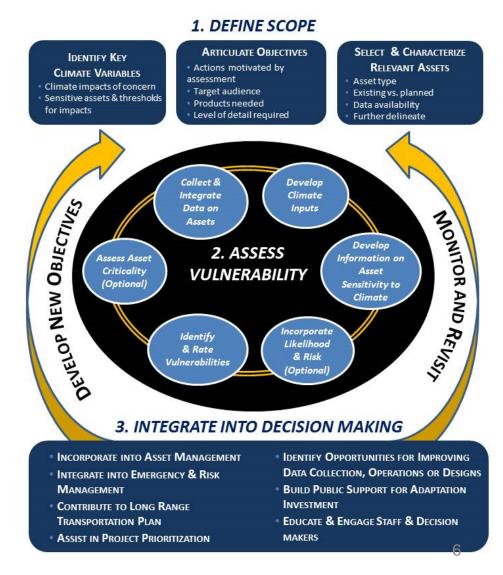
Project Level Goal: Consideration in Environmental Process, Preliminary Engineering, Design, Construction, Operations, Maintenance

Key Products:

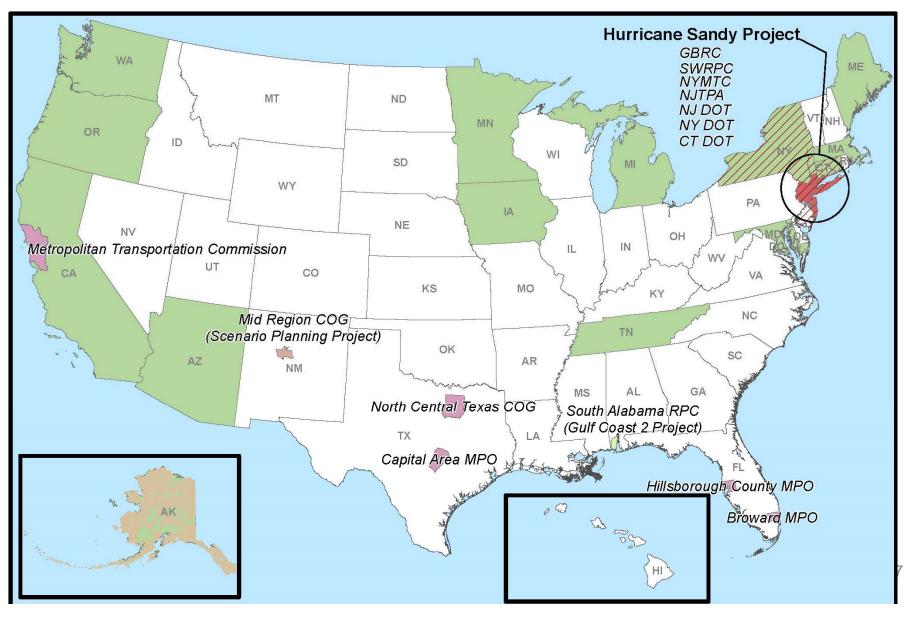
Updated engineering manuals, methods and processes

Activities:

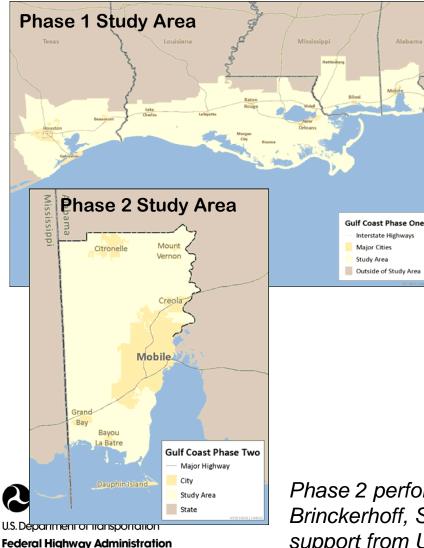
- Engineering Assessments
 - Gulf Coast 2 (Mobile)
 - Hurricane Sandy Follow-up and Vulnerability Assessment & Adaptation Analysis
 - Transportation Engineering Approaches to Climate Resiliency
 - Climate Resilience Pilots
- HEC 25 Vol 2: Highways in the Coastal Environment: Extreme Events
- Hydrology, hydraulic engineering research efforts, etc.


FHWA's Climate Change & Extreme Weather Vulnerability Assessment Framework (2012)

1. Define Project Scope


- Objectives
- Relevant Assets
- Climate Variables
- 2. Assess Vulnerability
 - Climate Inputs
 - Asset data, criticality, sensitivity
 - Vulnerabilities, risk

3. Integrate Vulnerability Into Decision Making



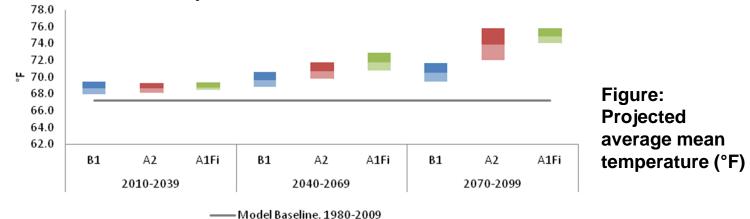
Climate Resilience Pilot & Other Project Locations

Gulf Coast 2 Project (Mobile, AL)

Primary Phase 2 Tasks

- 1. Identify critical transportation assets in Mobile (complete)
- 2. Identify climate effects, assess infrastructure sensitivity (complete)
- 3. Assess vulnerability of critical assets (September 2014)
- 4. Develop transferable risk management tools (October 2014)

8

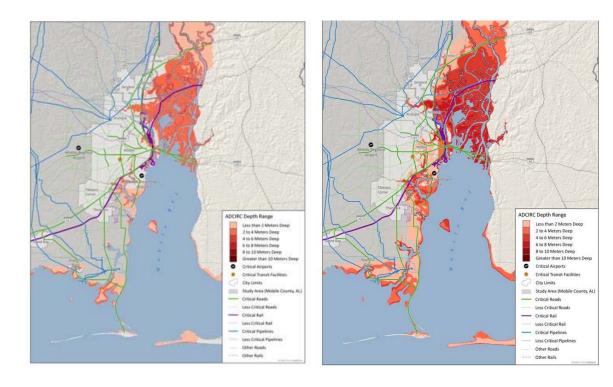

Completed tasks: FHWA website

Phase 2 performed by ICF International (prime), Parsons Brinckerhoff, South Coast Engineers, and Texas A&M, with support from USGS and Katharine Hayhoe (Texas Tech)

Projected Climate Change in Mobile: Temperature and Precipitation

• Increases in Temperature

 The number of heat events above 95°F and 100°F are projected to increase dramatically



• Changes in Precipitation are Less Certain

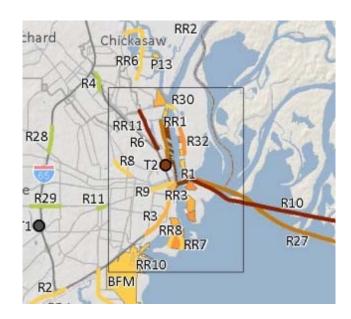
 100-year precipitation event is projected to be more intense in the future, though there is a wide spread of results across models

Sample of Storm Surge Analyses, etc.

Hurricane Katrina Natural Path Scenario Hurricane Katrina Shifted Path Scenario with 0.75 meter Sea-Level Rise

- Scenarios based on historic hurricanes, with varying
 - Track
 - Intensity
 - Sea level rise
- Temperature, precipitation projections

U.S. Department of Transportation Federal Highway Administration

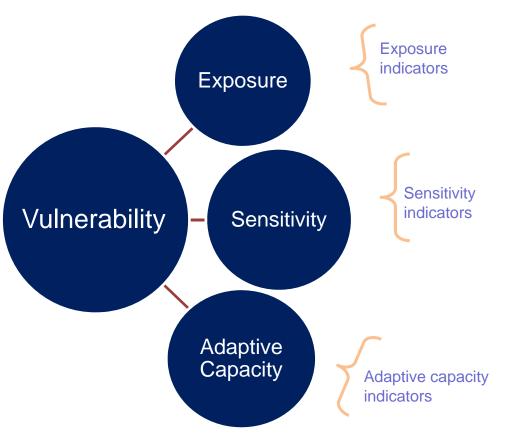

Vulnerability Assessment: Planning & Project levels

Vulnerability Screen

 High-level analysis to find assets most likely to be vulnerable to future changes

Engineering Assessments

- Detailed assessments of specific assets in Mobile
- Eleven case studies



Using Indicators to Score Vulnerability

- V = Function of (E, S, A)
- Chose indicators to represent exposure, sensitivity, and adaptive capacity
 - Characteristics that could indicate an asset may or may not be vulnerable
- Averages of indicators drive scoring
 - Weighting

Example Indicators

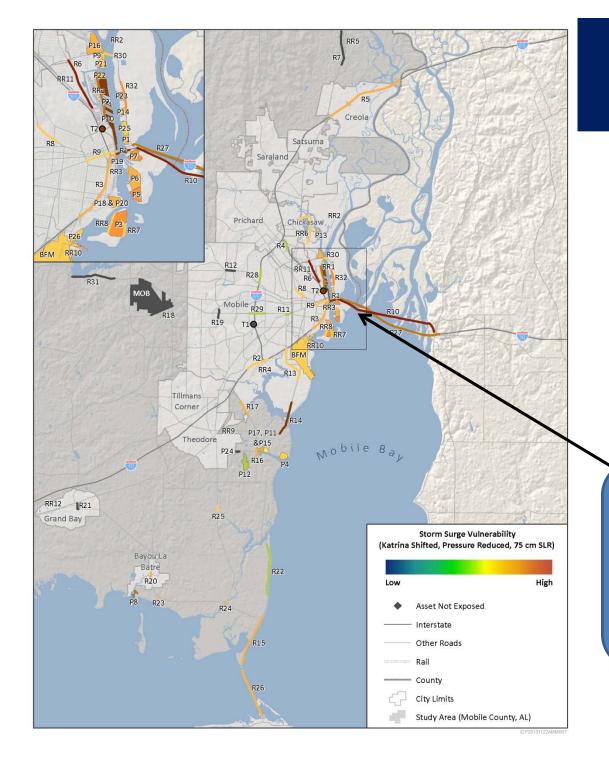
Exposure

- Temp-Days above 95°F
- 24-hour precipitation
- Storm surge height
- Wind speed exceeds threshold above which impacts may occur (yes/no)
- Inundated by sea level rise (yes/no)

Sensitivity

- Temp Pavement binder, traffic (roads)
- **Precip** FEMA flood zones, ponding, surface permeability (all modes)
- Storm surge Height & condition (bridges), electric signaling & soil type (rail), access (transit)
- Wind Building height, materials, roof type; road sign or signal density (road and rail)
- Sea level rise Drainage (air), protection (transit, roads)

Adaptive Capacity


- Speed to recover asset – cost of improvement (bridges), identified as a priority in emergency planning (rail, air, transit)
- Redundancy detour length (bridges, air), number of terminals/ runways (air), ability to reroute (transit and rail), rail yard interchange utility (rail)
- System disruption duration (climate variable-specific)

U.S. Department of Transportation Federal Highway Administration

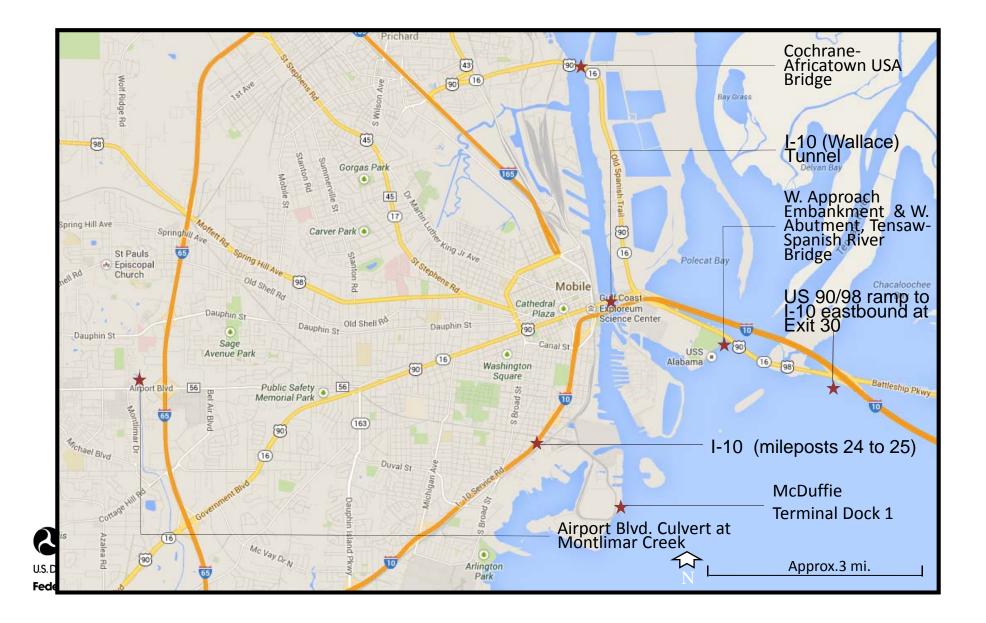
Highways Storm Surge Vulnerabilities

Segment Name	Vulnerability Score (Least Extreme)	Vulnerability Score (Most Extreme)	Data Availability*
Telegraph Road, from Downtown to Baybridge Road	3.2	4.0	92%
The Causeway (Battleship Parkway)	3.2	4.0	91%
I-10 Tunnel (Wallace Tunnel)	3.2	3.6	87%
SR-163 (Dauphin Island Parkway), from Island Road to Terrell Road	3.2	3.6	81%
I-10 Bridge across Mobile Bay	2.5	3.3	86%
Old Spanish Trail, between Cochrane Bridge and the tunnels	2.7	3.1	87%
Dauphin Island Bridge	2.6	3.0	100%
SR-188, where it crosses the river just North of Bayou la Batre	2.5	2.9	87%
Intersection of SR-188 and CR-59 (Bellingrath Road), near Fowl River	2.5	2.9	87%
SR-193 (Dauphin Island Parkway), from Dauphin Island Bridge to CR-188	2.5	2.9	92%

Federal Highway Administration

Storm Surge Vulnerability

- Highest where Mobile River meets Mobile Bay
- Low-lying coastal roads and bridges
- Location is biggest driver

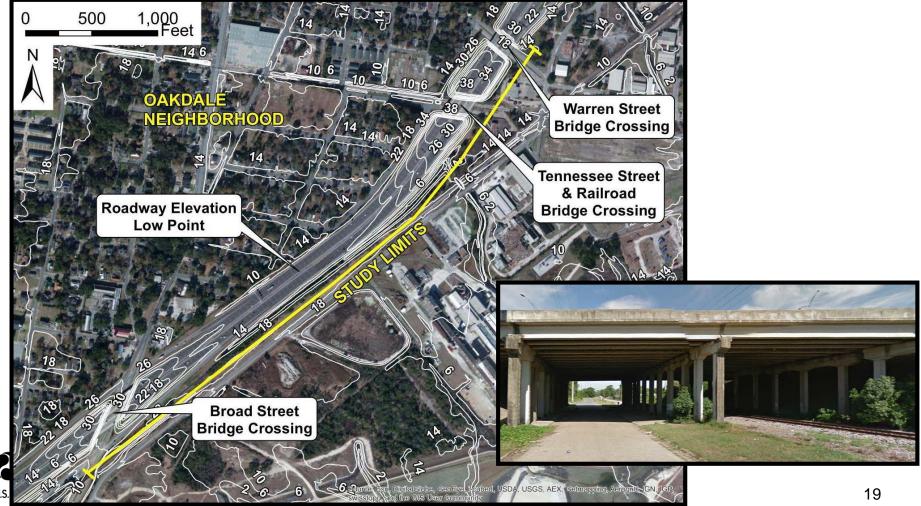

Example: The Causeway (R10)

- 17-29 ft. of storm surge/waves
- Damaged in past, unprotected, low approach, low embankment
- High replacement cost

Engineering Case Studies

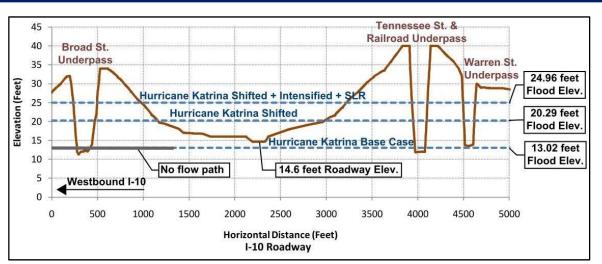
Climate Stressor	Asset Type	Specific Assets Studied
Precipitation	Major culvert	Airport Blvd. at Montlimar Creek
SLR	Navigable River Bridge	Cochrane Africatown USA Bridge
SLR	Embankment (erosion)	US 90/98 Tensaw Bridge
Storm Surge	Commercial shipping pier	McDuffie Coal Terminal, Dock 1
Storm Surge	Bridge abutment	US 90/98 Tensaw Bridge
Storm Surge	Bridge structural system	Exit 30, EB Ramp to I-10 Bayway Bridge
Storm Surge	Roadway alignment	I-10, Between Mileposts 24 and 25
Storm Surge	Tunnel	Wallace Tunnel
Temperature	Pavement	Generic
Temperature	Continuously-welded rail	Generic
All	Operations and maintenance	Generic

Engineering Case Studies


Engineering Analyses

Eleven-step adaptation approach

- 1. Describe the site context
- 2. Describe the existing or proposed facility
- 3. Identify environmental factors that may impact infrastructure components
- 4. Decide on climate scenarios and determine magnitude of changes
- 5. Assess performance of the existing or proposed facility
- 6. Develop adaptation option(s)
- 7. Assess performance of the adaptation options
- 8. Conduct an economic analysis
- 9. Evaluate additional decision-making considerations
- 10. Select a course of action
- 11. Plan and conduct on-going activities


I-10 – Mileposts 24 to 25 Road Alignment Exposure to Storm Surge

Federal Highway Administration

I-10 – Mileposts 24 to 25 Road Alignment Exposure to Storm Surge

Step 4: Climate scenario – Coastal storm surge with sea level rise added to most extreme scenario

Step 5: Assess Facility Performance

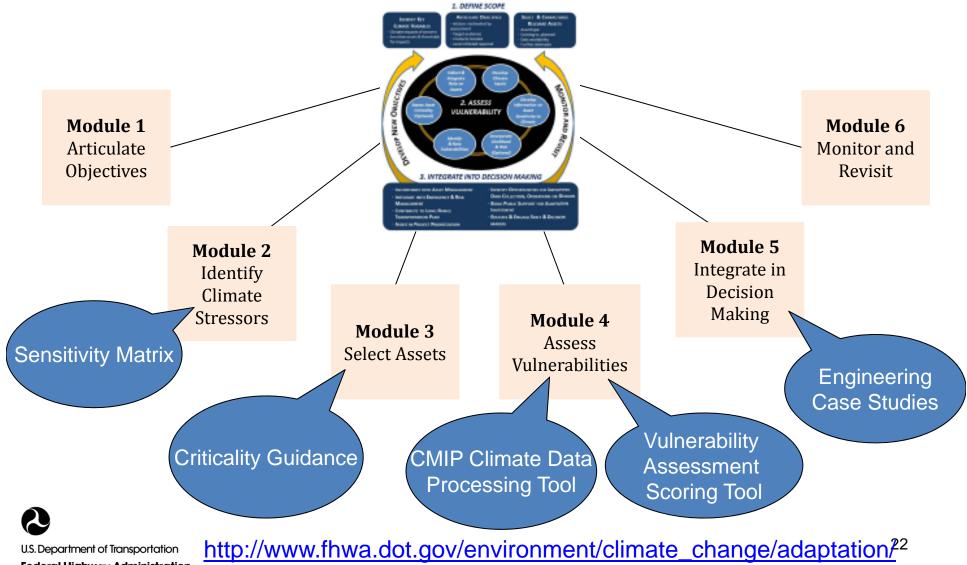
Surge Scenario	Overtop I- 10?	Inland Flooding Acre-Feet (Cu.Meters)	Flow Velocities at Tenn. St. &Rail Underpass fps (m/s)
Hurricane Katrina Base	NO	40	3.4
Case Scenario	NO	(51,700)	(1.0)
Hurricane Katrina Shifted	YES	1,300	6.6
Scenario	123	(1,581,000)	(2.0)
Hurricane Katrina Shifted + Intensified + Sea Level Rise (SLR) Scenario	YES	2,800 (3,412,000)	6.8 (2.1)

Permissible velocities: Grass: 2 to 4 fps; RR ballast: 3 to 6 fps; Concrete: 18 fps

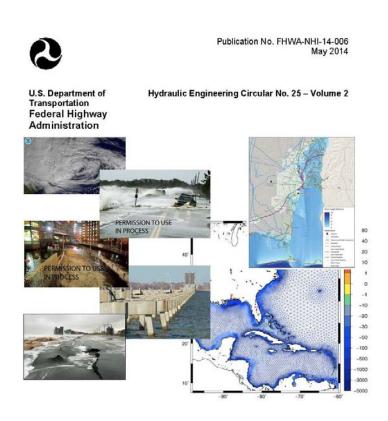
I-10 – Mileposts 24 to 25 Road Alignment Exposure to Storm Surge


Step 6: Develop Adaptation Options

- Harden one or more of the underpasses
- Armor I-10 roadway embankment
- Raise the roadway


Lessons Learned

- Roadway embankment breaching is an area with little research data on prediction methods.
- Additional erosion protection should be considered when designing roadway crossings that could be subjected to reverse flow from storm surges.


Tools Development and Deployment

Federal Highway Administration

Technical guidance: HEC-25 Volume 2

- Highways in the Coastal Environment: Assessing Extreme Events
- Technical guidance, methods for incorporating extreme events and climate change into coastal highway designs
- Focus on sea level rise, storm surge, wave action
- Summer 2014

Highways in the Coastal Environment: Assessing Extreme Events

Asset Management

- All State DOTs will develop asset management plans that address risks. Examples of risks:
 - Financial, Under-investment in maintenance, etc.
 - Economic
 - Seismic
 - Extreme weather
 - Climate change (worse and/or more frequent EWE, etc.) accelerated deterioration cycles
- Virtually all 50 States have used Emergency Relief funds for weather related damage over the last decade

Implications

Impacts (and implications) will vary by region...

- Climate change will affect:
 - Decisions on when/where to invest or reconstruct
 - Maintenance cycles
- Expect higher maintenance and operations costs; potentially costlier designs
- Adaptation can save funding over the long term
 - Emphasize proactive strategies vs. reacting to "disaster"
 - Focus on solutions

Photo credit: AECOM

Thank you.

http://www.fhwa.dot.gov/environment/climate_change/adaptation/

